Arduino Obstacle Avoiding Robot Car Engineering Final Year Arduino Project

The Arduino-Based Obstacle Avoiding Robot Car is an innovative project designed to demonstrate how automation and sensors can be used for smart navigation. This car is capable of moving automatically without colliding with any obstacles. It is built using an Arduino Uno, Ultrasonic Sensor, L298 Motor Driver Module, 4 BO Motors with Wheels, and a 12V Battery. The body of the car is handmade from hard cardboard, showcasing creativity and engineering skills.
₹3,999.00 Original price was: ₹3,999.00.₹3,500.00Current price is: ₹3,500.00.
The Arduino-Based Obstacle Avoiding Robot Car is an innovative and intelligent robotic project designed to showcase the power of automation, sensors, and embedded systems. This smart robot car can automatically detect and avoid obstacles in its path without any manual control, making it a perfect demonstration of autonomous navigation and real-time decision-making.
Built around the Arduino Uno microcontroller, the car uses an Ultrasonic Distance Sensor (HC-SR04) to continuously measure the distance between the vehicle and any obstacle in front of it. When the sensor detects an object within a certain range, the Arduino instantly processes the data and commands the motors — through the L298N Motor Driver Module — to change direction and avoid a collision.
The mechanical design includes 4 BO motors with wheels, powered by a 12V battery, providing smooth and stable movement on different surfaces. The car’s chassis is handmade from durable cardboard, which adds a creative and eco-friendly touch while demonstrating practical engineering skills.
This project is ideal for engineering students, robotics enthusiasts, and beginners in automation who want to learn how sensors and microcontrollers can work together to build intelligent systems. It also serves as an excellent choice for school and college exhibitions, robotics competitions, and academic final-year projects.
With a clear understanding of Arduino programming, sensor interfacing, and autonomous control logic, learners can also upgrade this project by adding features like line following, Bluetooth control, or IoT-based monitoring.
| 5 |
|
0 |
| 4 |
|
0 |
| 3 |
|
0 |
| 2 |
|
0 |
| 1 |
|
0 |
- Accident Prevention Project
- Arduino Bluetooth Controlled Car
- Arduino Security System
- Arduino Servo Door Lock
- Automation Learning Kit
- Beginner Robotics Project
- Best Electrical Project For Final Years
- DIY Robotics Kit
- eco friendly material science project
- Electrical Project
- Electrical project for final years students
- Electricity kit
- Emerging Technology Project
- Free Energy Based Inspire Award DIY Science Project
- Free Energy Project
- Generate Electricity By Waste Materials/Inspire Award Project/Generate Electricity By Trash
- Generate Electricity By Waste Materials/Inspire Award Project Kit Box/Generate Electricity By Plastic/Electricity From Garbage Project
- Generate Electricity by Waste Materials/Inspire Award Project Kit Box/Generate Electricity by Plastic and Pollurion Conword to Ink/Electricity from Garbage Project
- Generate Electricity by Waste Materials | High Power Electricity Generator
- Home Security Using Arduino
- Inspire Award Project
- Inspire Award Project for transport and Communication
- Inspire Award Project kit
- Inspire Manak Award Project
- IoT Based Access Control
- Line Following Robot
- national winner science project
- problem-solving product
- problems faced by military
- project Kit
- Rain Proof Stadium Project / Inspire Award project / Best Electrical Project For Final Years
- RC522 RFID Module Project
- real life problem-solving projects
- Real Life Problem Solving Project
- Resources Management Project
- RFID Card Reader Arduino
- Robotic Science Kit 101+ projects 134 Parts
- Safety for wild Animal Project kit/ Best Inspire Award Project Kit
- School Science Project
- science exhibition project
- Science Project Kit
- smart speed breaker project
- speed breaker project for school
- Transmission Line Overload Protection and Overload Sharing/Electrical Engineering Project
- Transport and Communication Project
Related Products
1. Introduction: In today’s world, the growing concern for environmental sustainability has led to the development of renewable energy solutions. Electric vehicles (EVs) have gained popularity as an eco-friendly alternative to traditional gasoline-powered cars. However, one of the challenges faced by EV owners is the limited range due to battery constraints. To address this issue, we have developed a groundbreaking project – a solar-powered wireless charging system that can provide emergency charging to electric vehicles using a remote-controlled (RC) robotic car.
The Smart Dustbin is an Arduino-based automatic waste bin that opens its lid automatically when someone comes near it using an ultrasonic sensor and servo motor. A green LED light glows with the message “USE ME” to guide users. This touchless system promotes hygiene, reduces manual contact, and encourages cleanliness in homes and public areas.
I will Provide You All Components Parts Machine Tools And Decoration Materials Available In Kit Box .I will Provide You Full Step By Step Making Video with 3D Cicuit Diagram , Report File , Synopsis File , PPT
In This Project Our Purpose is for showing how we can protect our forest , In This Project we show a device that device can listen gun sound and activate the sound alarm , this device is amazing , when we use in our forest this device then if any one come for huntering , when we use gun for killing animals then that device capcher the gun sound and transfer the signal to near forest department and there are available receiver so alarm start in forest department so there everyone understand someone enter to forest for huntering animal and he run for stop huntering , this is best device for stop huntering
Generate Electricity By Waste Materials
Generate Electricity By Plastic
Free Energy Generate Project
electricity from garbage
Waste Materials By Generate Electricity
This DIY project features a wearable watch with an RC transmitter that sends emergency signals to the nearest police car, triggering an alarm and red light for immediate response. Perfect for school projects, engineering experiments, DIY enthusiasts, and Inspire Awards. Watch now to see how this low-cost, localized system ensures quick action in emergencies and enhances women’s safety.
In This Project Kit Box We Will Give You All Made Circuit And Extra Decoration Materials , And Step By Step Videos ,3D Circuit Diagram , And Reading Pages , Synopsis File , And Online Training Access
Smart Street Light project
Automatic Street Light project kit Box
IR Sensor Street Light Project Kit Box
Inspire Award Project Kit Box
Street Light Project
Welcome to our Smart Inverter Project tutorial! In this video, we’ll show you how to build a DIY inverter that provides an automatic power backup solution for your home. If you’re looking for a continuous power supply during outages, this inverter with battery storage will keep your lights on even when the main power goes out.
This project involves creating a smart inverter circuit that can seamlessly switch from AC power to a 12V DC battery when the electricity supply is interrupted. Not only does it ensure uninterrupted power to your 230V AC appliances, but it also recharges the battery when the main power is available.
In this detailed how-to guide, we cover everything from the basic components needed to the step-by-step assembly and testing of the inverter. Plus, we’ll discuss how this inverter system can be adapted for use in transmission lines, ensuring a reliable power supply to cities from substations, even if the main transmission line fails temporarily.
What You’ll Learn in This Video:
Inverter Basics: Understand how an inverter works and the role of battery storage in providing continuous power.
Step-by-Step Construction: Follow our easy instructions to build your own inverter circuit with a 12V DC battery backup.
Automatic Switching: Learn how the inverter automatically switches to battery power during outages and back to AC power when available.
Practical Applications: Discover how this smart inverter system can be used in transmission lines to maintain city power supply during disruptions.
https://www.youtube.com/%20?v=tuKEapvEgMgIn an effort to promote efficient waste management and environmental sustainability, we have developed a cutting-edge smart dustbin that autonomously sorts waste into dry and wet categories. This innovative project leverages the power of Arduino, combined with soil sensor modules and pressure switches, to accurately identify the type of waste and direct it to the appropriate compartment.
In the pursuit of advancing environmental sustainability and promoting effective waste management, we have designed an innovative smart dustbin system that seamlessly segregates waste into dry and wet categories. This project is a significant step towards automating waste sorting, thereby enhancing recycling efficiency and reducing environmental pollution.
In this project, you will see a 4-way traffic light control system with an advanced safety feature – traffic spikes/barriers. When the signal is red, the spikes stay up to stop vehicles from breaking rules. If anyone tries to cross, their vehicle can get a flat tyre. 🚗❌ When the light turns green, the spikes go down, and vehicles can move safely.
IR Sensor: The IR sensor is used to detect the presence of a vehicle. When a vehicle enters the range of the sensor, it detects its presence. Relay Module: The relay module is used to control the system. Once the IR sensor detects a vehicle, it sends a signal to the relay module, which in turn activates the LED bulb and alarm. LED Bulb: The LED bulb is used to indicate the presence of a vehicle coming from the opposite side. When a vehicle is detected by the IR sensor, the LED bulb on the other side turns on, alerting drivers. Alarm: The alarm sounds to provide a warning of the vehicle’s approach, ensuring further attention and safety. Wiring and Connections:
Working Principle: When a vehicle enters the range of the IR sensor, the sensor detects its presence. The IR sensor sends a signal to the relay module. The relay module then activates the LED bulb and alarm on the opposite side. The alarm and LED bulb warn the drivers that a vehicle is approaching.
Objectives: Enhance road safety by alerting drivers about vehicles approaching from the opposite side. Prevent traffic accidents, especially in areas with limited visibility. Create a simple and cost-effective vehicle detection system for traffic monitoring.
Expected Outcomes: Early warning system for approaching vehicles, giving drivers more time to react. Improved awareness and timely responses from drivers to avoid accidents. Efficient use of sensors and alarms to ensure smooth traffic flow and safety.
Applications: Safety alert system on narrow roads or blind spots. Traffic control at signal points or crossing areas. Monitoring vehicles in industrial areas or warehouses where safety is critical.
Future Improvements: Use of advanced sensors (e.g., ultrasonic) for better accuracy. Integration with traffic signal systems for automated control. Solar-powered systems for cost-effective outdoor applications.













Reviews
There are no reviews yet.