Arduino Traffic Signal Project – For Transport & Communication/Transport & Communication Project Idea

In this project, you will see a 4-way traffic light control system with an advanced safety feature – traffic spikes/barriers. When the signal is red, the spikes stay up to stop vehicles from breaking rules. If anyone tries to cross, their vehicle can get a flat tyre. 🚗❌ When the light turns green, the spikes go down, and vehicles can move safely.
₹4,999.00 Original price was: ₹4,999.00.₹3,999.00Current price is: ₹3,999.00.
Traffic violations, especially jumping red lights, are a major cause of accidents and congestion in modern cities. To address this, our project “Smart Traffic Light System with Red Signal Spike Barrier” integrates traffic signals with a physical barrier system. The model uses Arduino Uno to control traffic lights and servo-operated spike barriers. When the signal turns red, the spike barrier automatically rises to stop vehicles, and when it turns green, the barrier lowers to allow smooth movement. This innovative system ensures better traffic discipline, reduces accidents, and promotes road safety.
| 5 |
|
0 |
| 4 |
|
0 |
| 3 |
|
0 |
| 2 |
|
0 |
| 1 |
|
0 |
- Accident Prevention Project
- Arduino Bluetooth Controlled Car
- Arduino Security System
- Arduino Servo Door Lock
- Automation Learning Kit
- Beginner Robotics Project
- Best Electrical Project For Final Years
- DIY Robotics Kit
- eco friendly material science project
- Electrical Project
- Electrical project for final years students
- Electricity kit
- Emerging Technology Project
- Free Energy Based Inspire Award DIY Science Project
- Free Energy Project
- Generate Electricity By Waste Materials/Inspire Award Project/Generate Electricity By Trash
- Generate Electricity By Waste Materials/Inspire Award Project Kit Box/Generate Electricity By Plastic/Electricity From Garbage Project
- Generate Electricity by Waste Materials/Inspire Award Project Kit Box/Generate Electricity by Plastic and Pollurion Conword to Ink/Electricity from Garbage Project
- Generate Electricity by Waste Materials | High Power Electricity Generator
- Home Security Using Arduino
- Inspire Award Project
- Inspire Award Project for transport and Communication
- Inspire Award Project kit
- Inspire Manak Award Project
- IoT Based Access Control
- Line Following Robot
- national winner science project
- problem-solving product
- problems faced by military
- project Kit
- Rain Proof Stadium Project / Inspire Award project / Best Electrical Project For Final Years
- RC522 RFID Module Project
- real life problem-solving projects
- Real Life Problem Solving Project
- Resources Management Project
- RFID Card Reader Arduino
- Robotic Science Kit 101+ projects 134 Parts
- Safety for wild Animal Project kit/ Best Inspire Award Project Kit
- School Science Project
- science exhibition project
- Science Project Kit
- smart speed breaker project
- speed breaker project for school
- Transmission Line Overload Protection and Overload Sharing/Electrical Engineering Project
- Transport and Communication Project
Related Products
In This Project Our Purpose is for showing how we can protect our forest , In This Project we show a device that device can listen gun sound and activate the sound alarm , this device is amazing , when we use in our forest this device then if any one come for huntering , when we use gun for killing animals then that device capcher the gun sound and transfer the signal to near forest department and there are available receiver so alarm start in forest department so there everyone understand someone enter to forest for huntering animal and he run for stop huntering , this is best device for stop huntering
Generate Electricity By Waste Materials
Inspire Award Project Kit Box
Generate Electricity By Plastic
Electrical Engineering Project Kit Box
Free Energy Project Kit Box
How It Works: Laser Beam Setup: A laser torch emits a beam that travels across the area by reflecting off three strategically placed mirrors (glasses). This configuration creates a continuous laser barrier around the perimeter of a model house or any area you wish to secure.
LDR Detection: The laser beam ultimately hits an LDR module, which is sensitive to light. As long as the laser beam is unbroken and falls on the LDR, the system remains in a passive state, with no alarm triggered.
Relay and Buzzer Activation: The LDR is connected to a single-channel relay module that controls a 9V buzzer. If the laser beam is interrupted, the LDR detects a change in light intensity, signaling the relay to activate the buzzer. This results in an audible alarm that warns you of the potential intrusion.
Unauthorized Entry Alert: The alarm is designed to activate whenever there is an obstruction in the laser path, such as someone entering the secured area without permission. This feature provides a simple yet effective means of safeguarding your space.
The name of this project is safety helmet. Mainly work of this project is safety of a rider. We make a connection between bike and helmet by using the sensors. When rider will wear the helmet then our bike start. If the rider will not wear the helmet then bike will not start. We use the indication system in the helmet also. Indication system will show you wear the helmet properly or not. So it’s good for safety purpose and we safe it from thief also. Because without helmet bike will not start.
The Cow Drone Safety system is a cutting-edge technology designed to improve the safety and well-being of cattle on farms. By utilizing drones equipped with advanced sensors and monitoring capabilities, this system aims to revolutionize the way farmers manage their livestock. In this project, we will explore the design, functionality, and potential benefits of the Cow Drone Safety system.
Solar Street Light School Science Project
Solar Street Light Project
LDR Solar Street Light
Automatic On/Off Solar Street Light
Automatic Solar Street Light School Science Project
This Project Is Based On Train Bridge With The Help Of This Project We Can Prevent Rail Crossing Accidents Which Occur When People Cross Train Tracks To Go From One Platform To Another In This We Have Installed Alert Alarm So That As Soon As The Train Arrives. The Bridge Will Be Closed And As Soon As The Train Leaves. The Bridge Will Open Automatically So That We Can Help Those People Who Are Unable Too Move From One Platform To Another. We Can Also Save Our Time .
In this video, I demonstrate how to create a floating house using ACC blocks (Autoclaved Aerated Concrete blocks) and a cardboard house. I built the base of the house with ACC blocks, which are lightweight and float on water. When placed in a water tank, the house’s height automatically rises with the water level, preventing it from sinking. This project shows how real-life houses can be designed to stay afloat during heavy rainfall or floods, offering a solution for disaster management in flood-prone areas. The idea behind this floating house concept is to build homes that automatically adjust their height based on the rising water levels, ensuring that they do not get submerged during extreme weather conditions.
This floating house project is a great idea for those interested in science experiments, civil engineering projects, or innovative disaster management solutions. Whether you’re a student, a science enthusiast, or someone looking for unique school projects, this video will help you understand the concept of a floating house and its potential use in real life. Watch the full video to see how you can make this project at home and learn about flood-resistant house designs.
Eyes Blink Sensor: An eyes blink sensor is a device or sensor that detects and monitors the blinking of a person’s eyes. It can be used for various purposes, such as in medical applications, research studies, or even as a personal alert system. When the sensor detects that the person’s eyes are closed or blinking, it triggers a specific action or event, such as sounding an alarm.
Audible Alarm: The sensor is equipped with a sound-generating mechanism that produces an audible alarm when it detects closed or blinking eyes. This alarm sound can be a beep, chime, or any other distinct sound that alerts the user or others in the vicinity.
Safety Applications: The alarm functionality can be particularly useful in safety-critical environments, such as monitoring drivers for signs of drowsiness, operators of heavy machinery, or individuals performing tasks that require sustained focus and attention.
this project use materials name – Glass , Ir Sensor , Pcv Plate , Alarm , 1K resostor , 9v Cap , 9v Battery , Jumper Wire , Glue Road , Soldering Powder , Screwdriver
Project Key Features: Waste Plastic Bag Collection: Plastic bags, which are typically waste material, are collected to prevent them from polluting the environment.
Electricity Generation: The plastic bags are burned to generate electricity. This process contributes to renewable energy production.
Pollution Control and Ink Production: The emissions released during the burning process are filtered and treated to create high-quality ink in an eco-friendly manner.
Road Construction Using Waste Materials: Recycled plastic bags and other waste materials are used to build sustainable roads. These roads are more durable and require less maintenance than traditional roads.
Environmental Benefits: The project helps reduce environmental pollution by efficiently managing waste and generating clean energy.
Economic Value: The recycling of plastic adds economic value, benefiting local economies and creating new jobs.
Sustainable Future: The project aims to create a more sustainable and eco-friendly future, where waste is properly utilized and environmental harm is minimized.
Project Benefits: Waste Management: Efficient disposal and utilization of waste plastic bags. Energy Generation: Clean, renewable energy production. Pollution Reduction: Emissions are controlled, and ink is produced in a safer, environmentally friendly way. Cost-Effective Infrastructure: Roads built from recycled materials are cost-effective and long-lasting. Environmental Impact: Reduces carbon footprint by providing eco-friendly solutions. This project offers a new perspective on waste management and sustainability, providing positive environmental impacts while supporting economic growth.
Learn how to build an automatic clothes drying system that responds to rain! In this project, we connect a rain-sensing module to a relay module, which activates a motor to move clothes indoors when it starts raining and back out when the rain stops. Perfect for keeping your laundry safe from unexpected showers. Ideal for DIY enthusiasts, smart home projects, and anyone looking to automate daily chores. Watch now to see how easily you can set up this rain-activated clothes drying system.
Welcome to our Smart Inverter Project tutorial! In this video, we’ll show you how to build a DIY inverter that provides an automatic power backup solution for your home. If you’re looking for a continuous power supply during outages, this inverter with battery storage will keep your lights on even when the main power goes out.
This project involves creating a smart inverter circuit that can seamlessly switch from AC power to a 12V DC battery when the electricity supply is interrupted. Not only does it ensure uninterrupted power to your 230V AC appliances, but it also recharges the battery when the main power is available.
In this detailed how-to guide, we cover everything from the basic components needed to the step-by-step assembly and testing of the inverter. Plus, we’ll discuss how this inverter system can be adapted for use in transmission lines, ensuring a reliable power supply to cities from substations, even if the main transmission line fails temporarily.
What You’ll Learn in This Video:
Inverter Basics: Understand how an inverter works and the role of battery storage in providing continuous power.
Step-by-Step Construction: Follow our easy instructions to build your own inverter circuit with a 12V DC battery backup.
Automatic Switching: Learn how the inverter automatically switches to battery power during outages and back to AC power when available.
Practical Applications: Discover how this smart inverter system can be used in transmission lines to maintain city power supply during disruptions.













Reviews
There are no reviews yet.