Arduino Ultrasonic Sensor Project Touchless Smart Dustbin

The Smart Dustbin is an Arduino-based automatic waste bin that opens its lid automatically when someone comes near it using an ultrasonic sensor and servo motor. A green LED light glows with the message “USE ME” to guide users. This touchless system promotes hygiene, reduces manual contact, and encourages cleanliness in homes and public areas.
₹3,999.00 Original price was: ₹3,999.00.₹3,000.00Current price is: ₹3,000.00.
The Smart Dustbin is an innovative and problem-solving idea designed to promote cleanliness and hygiene in homes and public places. This system uses modern technology to make waste disposal more convenient and automatic. When a person comes within 1 meter of the dustbin, a “USE ME” green LED light glows, helping people easily locate the dustbin and reminding them to use it. As someone approaches to throw waste, the lid automatically opens using a servo motor controlled by an Arduino Uno and ultrasonic sensor, allowing users to dispose of waste without touching the bin. This helps maintain hygiene and encourages people to use dustbins regularly, supporting a cleaner and smarter environment.
| 5 |
|
0 |
| 4 |
|
0 |
| 3 |
|
0 |
| 2 |
|
0 |
| 1 |
|
0 |
- Accident Prevention Project
- Arduino Bluetooth Controlled Car
- Arduino Security System
- Arduino Servo Door Lock
- Automation Learning Kit
- Beginner Robotics Project
- Best Electrical Project For Final Years
- DIY Robotics Kit
- eco friendly material science project
- Electrical Project
- Electrical project for final years students
- Electricity kit
- Emerging Technology Project
- Free Energy Based Inspire Award DIY Science Project
- Free Energy Project
- Generate Electricity By Waste Materials/Inspire Award Project/Generate Electricity By Trash
- Generate Electricity By Waste Materials/Inspire Award Project Kit Box/Generate Electricity By Plastic/Electricity From Garbage Project
- Generate Electricity by Waste Materials/Inspire Award Project Kit Box/Generate Electricity by Plastic and Pollurion Conword to Ink/Electricity from Garbage Project
- Generate Electricity by Waste Materials | High Power Electricity Generator
- Home Security Using Arduino
- Inspire Award Project
- Inspire Award Project for transport and Communication
- Inspire Award Project kit
- Inspire Manak Award Project
- IoT Based Access Control
- Line Following Robot
- national winner science project
- problem-solving product
- problems faced by military
- project Kit
- Rain Proof Stadium Project / Inspire Award project / Best Electrical Project For Final Years
- RC522 RFID Module Project
- real life problem-solving projects
- Real Life Problem Solving Project
- Resources Management Project
- RFID Card Reader Arduino
- Robotic Science Kit 101+ projects 134 Parts
- Safety for wild Animal Project kit/ Best Inspire Award Project Kit
- School Science Project
- science exhibition project
- Science Project Kit
- smart speed breaker project
- speed breaker project for school
- Transmission Line Overload Protection and Overload Sharing/Electrical Engineering Project
- Transport and Communication Project
Related Products
1. Introduction: In today’s world, the growing concern for environmental sustainability has led to the development of renewable energy solutions. Electric vehicles (EVs) have gained popularity as an eco-friendly alternative to traditional gasoline-powered cars. However, one of the challenges faced by EV owners is the limited range due to battery constraints. To address this issue, we have developed a groundbreaking project – a solar-powered wireless charging system that can provide emergency charging to electric vehicles using a remote-controlled (RC) robotic car.
Solar Street Light School Science Project
Solar Street Light Project
LDR Solar Street Light
Automatic On/Off Solar Street Light
Automatic Solar Street Light School Science Project
IR Sensor: The IR sensor is used to detect the presence of a vehicle. When a vehicle enters the range of the sensor, it detects its presence. Relay Module: The relay module is used to control the system. Once the IR sensor detects a vehicle, it sends a signal to the relay module, which in turn activates the LED bulb and alarm. LED Bulb: The LED bulb is used to indicate the presence of a vehicle coming from the opposite side. When a vehicle is detected by the IR sensor, the LED bulb on the other side turns on, alerting drivers. Alarm: The alarm sounds to provide a warning of the vehicle’s approach, ensuring further attention and safety. Wiring and Connections:
Working Principle: When a vehicle enters the range of the IR sensor, the sensor detects its presence. The IR sensor sends a signal to the relay module. The relay module then activates the LED bulb and alarm on the opposite side. The alarm and LED bulb warn the drivers that a vehicle is approaching.
Objectives: Enhance road safety by alerting drivers about vehicles approaching from the opposite side. Prevent traffic accidents, especially in areas with limited visibility. Create a simple and cost-effective vehicle detection system for traffic monitoring.
Expected Outcomes: Early warning system for approaching vehicles, giving drivers more time to react. Improved awareness and timely responses from drivers to avoid accidents. Efficient use of sensors and alarms to ensure smooth traffic flow and safety.
Applications: Safety alert system on narrow roads or blind spots. Traffic control at signal points or crossing areas. Monitoring vehicles in industrial areas or warehouses where safety is critical.
Future Improvements: Use of advanced sensors (e.g., ultrasonic) for better accuracy. Integration with traffic signal systems for automated control. Solar-powered systems for cost-effective outdoor applications.
Welcome to our Smart Inverter Project tutorial! In this video, we’ll show you how to build a DIY inverter that provides an automatic power backup solution for your home. If you’re looking for a continuous power supply during outages, this inverter with battery storage will keep your lights on even when the main power goes out.
This project involves creating a smart inverter circuit that can seamlessly switch from AC power to a 12V DC battery when the electricity supply is interrupted. Not only does it ensure uninterrupted power to your 230V AC appliances, but it also recharges the battery when the main power is available.
In this detailed how-to guide, we cover everything from the basic components needed to the step-by-step assembly and testing of the inverter. Plus, we’ll discuss how this inverter system can be adapted for use in transmission lines, ensuring a reliable power supply to cities from substations, even if the main transmission line fails temporarily.
What You’ll Learn in This Video:
Inverter Basics: Understand how an inverter works and the role of battery storage in providing continuous power.
Step-by-Step Construction: Follow our easy instructions to build your own inverter circuit with a 12V DC battery backup.
Automatic Switching: Learn how the inverter automatically switches to battery power during outages and back to AC power when available.
Practical Applications: Discover how this smart inverter system can be used in transmission lines to maintain city power supply during disruptions.
The Problem: Electrical poles, being integral components of power distribution networks, are susceptible to various faults, including short circuits. These faults pose significant dangers to both nearby individuals and the infrastructure itself. However, identifying when a pole is experiencing a fault, especially during adverse weather conditions like rain, can be challenging.
The Solution: Our project introduces a visual indicator system designed to promptly notify observers when a fault occurs in an electrical pole. This system consists of a small strip affixed to the pole, divided into two distinct colors: green and red. During normal operating conditions, when no fault is present, the strip remains green, indicating that the pole is functioning safely. However, when a fault such as a short circuit occurs, the strip promptly changes its color from green to red, si
How it Works: The indicator strip is equipped with sensors capable of detecting abnormal electrical activity, such as an increase in current flow due to a short circuit. Upon detecting such an anomaly, the sensor triggers the color change mechanism, causing the strip to transition from green to red. This visual change serves as an immediate warning sign to anyone in the vicinity that the pole is experiencing a fault and should be avoided.
Benefits: Enhanced Safety: By providing a clear visual indication of faults, the system helps prevent accidents and injuries caused by inadvertent contact with electrified poles. Timely Response: Prompt identification of faults enables swift corrective action, minimizing downtime and potential damage to the electrical infrastructure. User-Friendly: The simplicity of the color-changing indicator strip ensures that it is easily understandable by individuals of all backgrounds and levels of expert
Design and Operation: VAWTs typically consist of two or more blades that rotate around a vertical axis. The blades can have different shapes, such as straight, helical, or S-shaped, and are attached to a central shaft. As the wind blows, the blades capture the kinetic energy and convert it into mechanical rotation, which can then be used to generate electricity through a generator or to perform other tasks directly.
The Automatic Staircase Lighting System is an Arduino-based project that uses IR sensors to detect movement and control LED lights automatically. When a person steps on the first or last stair, the lights turn on and switch off after crossing, saving energy and enhancing safety. Ideal for homes, malls, parks, and public places.
In This Project Our Purpose is for showing how we can protect our forest , In This Project we show a device that device can listen gun sound and activate the sound alarm , this device is amazing , when we use in our forest this device then if any one come for huntering , when we use gun for killing animals then that device capcher the gun sound and transfer the signal to near forest department and there are available receiver so alarm start in forest department so there everyone understand someone enter to forest for huntering animal and he run for stop huntering , this is best device for stop huntering
Introduction: We have developed this project based on India’s Chandrayaan mission. This project is a part of a professional and technical campaign showcasing India’s presence in international space exploration. In this project, we have created a model based on the fundamental concepts of the Chandrayaan mission.
Transmission Line Fault Detection Project
Electrical Engineering Project Making Kit Box
Fault Detection In Transmission Line Project
Line To Ground Fault Detection
Three Phase Transmission Line Fault Detection Project
In This Project Kit Box We will Give You Only All Components And Parts And Extra Decoration Materials And Step By Step Videos 3D Circuit Diagram And Reading Pages With Synopsis File And Online Training Access
In this project, you will see a 4-way traffic light control system with an advanced safety feature – traffic spikes/barriers. When the signal is red, the spikes stay up to stop vehicles from breaking rules. If anyone tries to cross, their vehicle can get a flat tyre. 🚗❌ When the light turns green, the spikes go down, and vehicles can move safely.
This project presents a Smart Transmission Line Protection System designed to ensure safe and efficient electricity transmission. It features automatic fault detection for line-to-line, line-to-ground, and overload conditions. Powered by a dynamo-based generator, the system balances load and cuts off supply during high voltage or blackouts to prevent damage. With real-time fault sensing and a manual reset mechanism, it ensures safety, reduces power loss, and protects electrical infrastructure.













Reviews
There are no reviews yet.