Bluetooth Controlled Car Using Arduino Uno Engineering Final Year Arduino Project

The Arduino-based Mobile Control Bluetooth Robotic Car is an innovative project designed to demonstrate how Bluetooth can be used for smart navigation. This car can be seamlessly driven, left, right, forward, and backward using your mobile phone.
₹3,999.00 Original price was: ₹3,999.00.₹3,000.00Current price is: ₹3,000.00.
The Arduino-Based Mobile Controlled Bluetooth Robotic Car is an innovative and educational robotics project designed for students, hobbyists, and tech enthusiasts. This project demonstrates how wireless communication can be integrated with embedded systems to create a smart and efficient robotic vehicle.
The car is powered by an Arduino Uno microcontroller, which acts as the brain of the system. It receives real-time commands via Bluetooth technology from a smartphone, allowing the user to control the movement of the car — forward, backward, left, right, and stop — with just a few taps on a mobile app (such as the Bluetooth Controller app).
This project showcases the seamless integration of Bluetooth HC-05 module, L293D motor driver, DC motors, and Arduino Uno, offering a clear understanding of wireless control, motor interfacing, and automation principles.
It is ideal for engineering students, DIY enthusiasts, and beginners in robotics who want to explore IoT and Bluetooth communication in embedded systems. The project can also be upgraded with ultrasonic sensors, line-following capabilities, or voice command control for advanced functionality.
By building this project, learners gain valuable hands-on experience in circuit design, Arduino programming, and real-time Bluetooth interfacing, making it a perfect project for academic exhibitions, robotics competitions, and final-year engineering submissions.
| 5 |
|
0 |
| 4 |
|
0 |
| 3 |
|
0 |
| 2 |
|
0 |
| 1 |
|
0 |
- Accident Prevention Project
- Arduino Bluetooth Controlled Car
- Arduino Security System
- Arduino Servo Door Lock
- Automation Learning Kit
- Beginner Robotics Project
- Best Electrical Project For Final Years
- DIY Robotics Kit
- eco friendly material science project
- Electrical Project
- Electrical project for final years students
- Electricity kit
- Emerging Technology Project
- Free Energy Based Inspire Award DIY Science Project
- Free Energy Project
- Generate Electricity By Waste Materials/Inspire Award Project/Generate Electricity By Trash
- Generate Electricity By Waste Materials/Inspire Award Project Kit Box/Generate Electricity By Plastic/Electricity From Garbage Project
- Generate Electricity by Waste Materials/Inspire Award Project Kit Box/Generate Electricity by Plastic and Pollurion Conword to Ink/Electricity from Garbage Project
- Generate Electricity by Waste Materials | High Power Electricity Generator
- Home Security Using Arduino
- Inspire Award Project
- Inspire Award Project for transport and Communication
- Inspire Award Project kit
- Inspire Manak Award Project
- IoT Based Access Control
- Line Following Robot
- national winner science project
- problem-solving product
- problems faced by military
- project Kit
- Rain Proof Stadium Project / Inspire Award project / Best Electrical Project For Final Years
- RC522 RFID Module Project
- real life problem-solving projects
- Real Life Problem Solving Project
- Resources Management Project
- RFID Card Reader Arduino
- Robotic Science Kit 101+ projects 134 Parts
- Safety for wild Animal Project kit/ Best Inspire Award Project Kit
- School Science Project
- science exhibition project
- Science Project Kit
- smart speed breaker project
- speed breaker project for school
- Transmission Line Overload Protection and Overload Sharing/Electrical Engineering Project
- Transport and Communication Project
Related Products
The Automatic Staircase Lighting System is an Arduino-based project that uses IR sensors to detect movement and control LED lights automatically. When a person steps on the first or last stair, the lights turn on and switch off after crossing, saving energy and enhancing safety. Ideal for homes, malls, parks, and public places.
Project Key Features: Waste Plastic Bag Collection: Plastic bags, which are typically waste material, are collected to prevent them from polluting the environment.
Electricity Generation: The plastic bags are burned to generate electricity. This process contributes to renewable energy production.
Pollution Control and Ink Production: The emissions released during the burning process are filtered and treated to create high-quality ink in an eco-friendly manner.
Road Construction Using Waste Materials: Recycled plastic bags and other waste materials are used to build sustainable roads. These roads are more durable and require less maintenance than traditional roads.
Environmental Benefits: The project helps reduce environmental pollution by efficiently managing waste and generating clean energy.
Economic Value: The recycling of plastic adds economic value, benefiting local economies and creating new jobs.
Sustainable Future: The project aims to create a more sustainable and eco-friendly future, where waste is properly utilized and environmental harm is minimized.
Project Benefits: Waste Management: Efficient disposal and utilization of waste plastic bags. Energy Generation: Clean, renewable energy production. Pollution Reduction: Emissions are controlled, and ink is produced in a safer, environmentally friendly way. Cost-Effective Infrastructure: Roads built from recycled materials are cost-effective and long-lasting. Environmental Impact: Reduces carbon footprint by providing eco-friendly solutions. This project offers a new perspective on waste management and sustainability, providing positive environmental impacts while supporting economic growth.
This Arduino RFID Access Control System uses an RC522 module to read card UIDs, an I2C LCD to display messages, and a servo motor to open or close the door automatically. A blue LED indicates card detection. It’s a simple, low-cost security project ideal for beginners in IoT and electronics.
This project presents a Smart Transmission Line Protection System designed to ensure safe and efficient electricity transmission. It features automatic fault detection for line-to-line, line-to-ground, and overload conditions. Powered by a dynamo-based generator, the system balances load and cuts off supply during high voltage or blackouts to prevent damage. With real-time fault sensing and a manual reset mechanism, it ensures safety, reduces power loss, and protects electrical infrastructure.
The Arduino-Based Obstacle Avoiding Robot Car is an innovative project designed to demonstrate how automation and sensors can be used for smart navigation. This car is capable of moving automatically without colliding with any obstacles. It is built using an Arduino Uno, Ultrasonic Sensor, L298 Motor Driver Module, 4 BO Motors with Wheels, and a 12V Battery. The body of the car is handmade from hard cardboard, showcasing creativity and engineering skills.
The Cow Drone Safety system is a cutting-edge technology designed to improve the safety and well-being of cattle on farms. By utilizing drones equipped with advanced sensors and monitoring capabilities, this system aims to revolutionize the way farmers manage their livestock. In this project, we will explore the design, functionality, and potential benefits of the Cow Drone Safety system.
This DIY project features a wearable watch with an RC transmitter that sends emergency signals to the nearest police car, triggering an alarm and red light for immediate response. Perfect for school projects, engineering experiments, DIY enthusiasts, and Inspire Awards. Watch now to see how this low-cost, localized system ensures quick action in emergencies and enhances women’s safety.
Generate Electricity By Waste Materials
Generate Electricity By Plastic
Free Energy Generate Project
electricity from garbage
Waste Materials By Generate Electricity
Objective: To mitigate air pollution by capturing vehicle emissions and converting them into usable ink.
Technology Used: Carbon filters integrated into vehicles to capture emitted smoke particles.
Conversion Process: Smoke particles trapped by filters are processed to extract carbon-based materials suitable for ink production.
Introduction: We have developed this project based on India’s Chandrayaan mission. This project is a part of a professional and technical campaign showcasing India’s presence in international space exploration. In this project, we have created a model based on the fundamental concepts of the Chandrayaan mission.
I Will Provide You All Components , Parts , Machines , Tools , Decoration Materials Available In Kit Box .
I Will Provide You All Components , Parts , Machines , Tools , Decoration Materials Available In Kit Box . Than I will provide You full Step By Step Making Video + Report File + Synopsis File + Making Video My Team Help You
We Will Give You In Kit Box All Materials/Parts/Machines/Tools With (10 Extra Surprise) Decoration Materials . That Not Showing Here Buy Kit Box & Get That Surprise Materials
https://www.youtube.com/%20?v=tuKEapvEgMgIn an effort to promote efficient waste management and environmental sustainability, we have developed a cutting-edge smart dustbin that autonomously sorts waste into dry and wet categories. This innovative project leverages the power of Arduino, combined with soil sensor modules and pressure switches, to accurately identify the type of waste and direct it to the appropriate compartment.
In the pursuit of advancing environmental sustainability and promoting effective waste management, we have designed an innovative smart dustbin system that seamlessly segregates waste into dry and wet categories. This project is a significant step towards automating waste sorting, thereby enhancing recycling efficiency and reducing environmental pollution.













Reviews
There are no reviews yet.