UPS Project/Inverter Project/Best Electrical Engineering project kit box
Forest Animal Safety Project Idea to Solve Wildlife Problems | Inspire Award Project Ideas
Life-saving stick for farmers/Farmer safety device/Snake encounter prevention/DIY project guide/Farming innovation Vibration stick for snake deterrence Agriculture safety technology Farmer tool for snake protection DIY life-saving device Snake repellant stick

Welcome to our Smart Inverter Project tutorial! In this video, we’ll show you how to build a DIY inverter that provides an automatic power backup solution for your home. If you’re looking for a continuous power supply during outages, this inverter with battery storage will keep your lights on even when the main power goes out.
This project involves creating a smart inverter circuit that can seamlessly switch from AC power to a 12V DC battery when the electricity supply is interrupted. Not only does it ensure uninterrupted power to your 230V AC appliances, but it also recharges the battery when the main power is available.
In this detailed how-to guide, we cover everything from the basic components needed to the step-by-step assembly and testing of the inverter. Plus, we’ll discuss how this inverter system can be adapted for use in transmission lines, ensuring a reliable power supply to cities from substations, even if the main transmission line fails temporarily.
What You’ll Learn in This Video:
Inverter Basics: Understand how an inverter works and the role of battery storage in providing continuous power.
Step-by-Step Construction: Follow our easy instructions to build your own inverter circuit with a 12V DC battery backup.
Automatic Switching: Learn how the inverter automatically switches to battery power during outages and back to AC power when available.
Practical Applications: Discover how this smart inverter system can be used in transmission lines to maintain city power supply during disruptions.
₹3,999.00 Original price was: ₹3,999.00.₹3,300.00Current price is: ₹3,300.00.
In today’s world, continuous and reliable power supply is crucial for various household and industrial applications. Power outages, however, are a common issue that can disrupt daily activities and cause inconvenience. To address this problem, we have developed a Smart Inverter/UPS (Uninterruptible Power Supply) system that ensures a seamless transition from mains electricity to battery power in the event of a power failure. This project not only demonstrates the conversion of AC power to DC for battery storage but also illustrates the automated switching mechanism that provides uninterrupted power to essential devices.
| 5 |
|
0 |
| 4 |
|
0 |
| 3 |
|
0 |
| 2 |
|
0 |
| 1 |
|
0 |
- Accident Prevention Project
- Arduino Bluetooth Controlled Car
- Arduino Security System
- Arduino Servo Door Lock
- Automation Learning Kit
- Beginner Robotics Project
- Best Electrical Project For Final Years
- DIY Robotics Kit
- eco friendly material science project
- Electrical Project
- Electrical project for final years students
- Electricity kit
- Emerging Technology Project
- Free Energy Based Inspire Award DIY Science Project
- Free Energy Project
- Generate Electricity By Waste Materials/Inspire Award Project/Generate Electricity By Trash
- Generate Electricity By Waste Materials/Inspire Award Project Kit Box/Generate Electricity By Plastic/Electricity From Garbage Project
- Generate Electricity by Waste Materials/Inspire Award Project Kit Box/Generate Electricity by Plastic and Pollurion Conword to Ink/Electricity from Garbage Project
- Generate Electricity by Waste Materials | High Power Electricity Generator
- Home Security Using Arduino
- Inspire Award Project
- Inspire Award Project for transport and Communication
- Inspire Award Project kit
- Inspire Manak Award Project
- IoT Based Access Control
- Line Following Robot
- national winner science project
- problem-solving product
- problems faced by military
- project Kit
- Rain Proof Stadium Project / Inspire Award project / Best Electrical Project For Final Years
- RC522 RFID Module Project
- real life problem-solving projects
- Real Life Problem Solving Project
- Resources Management Project
- RFID Card Reader Arduino
- Robotic Science Kit 101+ projects 134 Parts
- Safety for wild Animal Project kit/ Best Inspire Award Project Kit
- School Science Project
- science exhibition project
- Science Project Kit
- smart speed breaker project
- speed breaker project for school
- Transmission Line Overload Protection and Overload Sharing/Electrical Engineering Project
- Transport and Communication Project
Related Products
Introduction Of Project In This Project We show when vehicle cross the rood then breaker move and generate electricity ( here we convert mechanical power to electrical power ) so when electricity generate that electricity we store in battery and when night start that time that store power automatic go to street light and street light glowing so in this project we show how to generate electricity by speed breaker , If You Want to Only Watch Full Making Video Of Project Step by Step With Project File and Synopsis file.
Introduction: We have developed this project based on India’s Chandrayaan mission. This project is a part of a professional and technical campaign showcasing India’s presence in international space exploration. In this project, we have created a model based on the fundamental concepts of the Chandrayaan mission.
Transmission Line Fault Detection Project
Electrical Engineering Project Making Kit Box
Fault Detection In Transmission Line Project
Line To Ground Fault Detection
Three Phase Transmission Line Fault Detection Project
In This Project Kit Box We will Give You Only All Components And Parts And Extra Decoration Materials And Step By Step Videos 3D Circuit Diagram And Reading Pages With Synopsis File And Online Training Access
Health + Electricity Generation – Combines fitness with energy savings.
Made from Cardboard – Low-cost and eco-friendly DIY model.
Uses a Dynamo Motor – Pedaling turns mechanical energy into electricity.
Inverter Battery Charging – Just 15 minutes of cycling daily can charge your home inverter up to 40–50%.
Reduces Electricity Bill – Can help cut down your power costs by up to 50%
Perfect for Home Use – Easy to set up and use regularly.
Eco-Friendly Solution – Promotes green energy and reduces carbon footprint.
Great for Science Fairs & School Projects – A unique mix of innovation and education.
Boosts Motivation – Provides instant results to keep users motivated to cycle daily.
Step Toward Renewable Energy – Inspires sustainable living and self-reliance.
Footstep Power Generate Mechanical Project
Generate Electricity From Mechanical Energy
Generate Electricity By Pressure
Generate Electricity By Walking
Footstep Power Generate Project
In This Project Our Purpose is for showing how we can protect our forest , In This Project we show a device that device can listen gun sound and activate the sound alarm , this device is amazing , when we use in our forest this device then if any one come for huntering , when we use gun for killing animals then that device capcher the gun sound and transfer the signal to near forest department and there are available receiver so alarm start in forest department so there everyone understand someone enter to forest for huntering animal and he run for stop huntering , this is best device for stop huntering
Renewable Energy Storage Solution: Gravity battery is a sustainable energy storage solution for, designed to store excess energy generated from renewable sources like solar or wind.
Low Environmental Impact: Environmentally friendly as it avoids hazardous materials and relies on gravitational potential energy, reducing the ecological footprint. Scalable and Modular Design:
Gravity batteries have longer lifecycles compared to conventional batteries, leading to reduced replacement and maintenance costs.
I will Provide You All Components Parts Machine Tools And Decoration Materials Available In Kit Box .I will Provide You Full Step By Step Making Video with 3D Cicuit Diagram , Report File , Synopsis File , PPT
Design and Operation: VAWTs typically consist of two or more blades that rotate around a vertical axis. The blades can have different shapes, such as straight, helical, or S-shaped, and are attached to a central shaft. As the wind blows, the blades capture the kinetic energy and convert it into mechanical rotation, which can then be used to generate electricity through a generator or to perform other tasks directly.
Learn how to build an automatic clothes drying system that responds to rain! In this project, we connect a rain-sensing module to a relay module, which activates a motor to move clothes indoors when it starts raining and back out when the rain stops. Perfect for keeping your laundry safe from unexpected showers. Ideal for DIY enthusiasts, smart home projects, and anyone looking to automate daily chores. Watch now to see how easily you can set up this rain-activated clothes drying system.
The Problem: Electrical poles, being integral components of power distribution networks, are susceptible to various faults, including short circuits. These faults pose significant dangers to both nearby individuals and the infrastructure itself. However, identifying when a pole is experiencing a fault, especially during adverse weather conditions like rain, can be challenging.
The Solution: Our project introduces a visual indicator system designed to promptly notify observers when a fault occurs in an electrical pole. This system consists of a small strip affixed to the pole, divided into two distinct colors: green and red. During normal operating conditions, when no fault is present, the strip remains green, indicating that the pole is functioning safely. However, when a fault such as a short circuit occurs, the strip promptly changes its color from green to red, si
How it Works: The indicator strip is equipped with sensors capable of detecting abnormal electrical activity, such as an increase in current flow due to a short circuit. Upon detecting such an anomaly, the sensor triggers the color change mechanism, causing the strip to transition from green to red. This visual change serves as an immediate warning sign to anyone in the vicinity that the pole is experiencing a fault and should be avoided.
Benefits: Enhanced Safety: By providing a clear visual indication of faults, the system helps prevent accidents and injuries caused by inadvertent contact with electrified poles. Timely Response: Prompt identification of faults enables swift corrective action, minimizing downtime and potential damage to the electrical infrastructure. User-Friendly: The simplicity of the color-changing indicator strip ensures that it is easily understandable by individuals of all backgrounds and levels of expert
In this video, I demonstrate how to create a floating house using ACC blocks (Autoclaved Aerated Concrete blocks) and a cardboard house. I built the base of the house with ACC blocks, which are lightweight and float on water. When placed in a water tank, the house’s height automatically rises with the water level, preventing it from sinking. This project shows how real-life houses can be designed to stay afloat during heavy rainfall or floods, offering a solution for disaster management in flood-prone areas. The idea behind this floating house concept is to build homes that automatically adjust their height based on the rising water levels, ensuring that they do not get submerged during extreme weather conditions.
This floating house project is a great idea for those interested in science experiments, civil engineering projects, or innovative disaster management solutions. Whether you’re a student, a science enthusiast, or someone looking for unique school projects, this video will help you understand the concept of a floating house and its potential use in real life. Watch the full video to see how you can make this project at home and learn about flood-resistant house designs.













Reviews
There are no reviews yet.